El Sonido y La Luz*




El sonido.




1. Cómo se produce el sonido

    El sonido solo se produce sonido cuando un cuerpo vibra muy rápidamente.

La vibración del elástico produce un sonido
    La frecuencia es el número de vibraciones u oscilaciones completas que se efectúan en 1 segundo.
    Se producen sonidos audibles cuando un cuerpo vibra con una frecuencia comprendida entre 20 y 20000 Hz (Hercio, unidad de medida para la frecuencia).


Una guitarra produce sonido si vibra con una frecuencia
comprendida entre 20 y 20000 Hz

    El sonido se transmite a través de medios materiales, sólidos, líquidos o gaseosos pero nunca a través del vacío.
   El sonido se produce cuando un cuerpo vibra con una frecuencia comprendida entre 20 y 20000 Hz y existe un medio material en el que pueda propagarse.
    El sonido es una onda. Una onda es una perturbación que se propaga por el espacio. En una onda se propaga energía, no materia.
    El sonido se propaga en el aire a una velocidad de 340 m/s a temperatura normal (aproximadamente a 20º).
Para que el sonido pueda llegar a nuestros oídos necesita un espacio o medio de propagación, este normalmente suele ser el aire la velocidad de propagación del sonido en el aire es de unos 334 m/s y a 0º es de 331,6 m/s.
La velocidad de propagación es proporcional a la raíz cuadrada de la temperatura absoluta y es alrededor de 12 m/s mayor a 20º.
La velocidad es siempre independiente de la presión atmosférica. Como hemos visto cuando mayor sea la temperatura del ambiente menos rápido llegara el sonido a nuestros oídos, es por eso que algunas personas dicen que "en invierno se suele escuchar mejor" es decir, a mayor temperatura menor respuesta del sonido en el aire.

MEDIO
TEMPERATURA (C°)
VELOCIDAD (m/s)
Aire
0
331,46
Argón
0
319
Bióxido de Carbono
0
260,3
Hidrógeno
0
1286
Helio
0
970
Nitrógeno
0
333,64
Oxigeno
0
314,84
Agua destilada
20
1484
Agua de mar
15
1509,7
Mercurio
20
1451
Aluminio
17-25
6400
Vidrio
17-25
5260
Oro
17-25
3240
Hierro
17-25
5930
Plomo
17-25
2400
Plata
17-25
3700
Acero inoxidable
17-25
5740

El sonido se propaga a diferentes velocidades en medios de distinta densidad. En general, se propaga a mayor velocidad en líquidos y sólidos que en gases  (como el aire). La velocidad de propagación del sonido es, por ejemplo, de unos 1.509,7 m/s en el agua y de unos 5.930 m/s en el acero  Un cuerpo en oscilación pone en movimiento a las moléculas de aire (del medio) que lo rodean. Éstas, a su vez, transmiten ese movimiento a las moléculas vecinas y así sucesivamente.
Cada molécula de aire entra en oscilación en torno a su punto de reposo. Es decir, el desplazamiento que sufre cada molécula es pequeño. Pero el movimiento se propaga a través del medio. Entre la fuente sonora (el cuerpo en oscilación) y el receptor (el ser humano) tenemos entonces una transmisión de energía pero no un traslado de materia.
No son las moléculas de aire que rodean al cuerpo en oscilación las que hacen entrar en movimiento al tímpano, sino las que están junto al mismo, que fueron puestas en movimiento a medida que la onda se fue propagando en el medio.
El (pequeño) desplazamiento (oscilatorio) que sufren las distintas moléculas de aire genera zonas en las que hay una mayor concentración de moléculas (mayor densidad), zonas de condensación, y zonas en las que hay una menor concentración de moléculas (menor densidad), zonas de rarefacción. Esas zonas de mayor o menor densidad generan una variación alterna en la presión estática del aire (la presión del aire en ausencia de sonido). Es lo que se conoce como presión sonora.
El sonido es una onda mecánica longitudinal que se propaga a través de un medio elástico. El sonido no se propaga en el vacío.
                          
2. Cualidades sonoras
    En todos los sonidos que percibimos se pueden distinguir tres cualidades: sonoridad, tono y timbre.
  • La sonoridad está relacionada con la intensidad del sonido. La intensidad de un sonido viene determinada por la amplitud del movimiento oscilatorio, subjetivamente, la intensidad de un sonido corresponde a nuestra percepción del mismo como más o menos fuerte. Cuando elevamos el volumen de la cadena de música o del televisor, lo que hacemos es aumentar la intensidad del sonido.
  • El tono está relacionado con la frecuencia. El tono de un sonido depende únicamente de su frecuencia, es decir, del número de oscilaciones por segundo. La altura de un sonido corresponde a nuestra percepción del mismo como más grave o más agudo. Cuando mayor sea la frecuencia, más agudo será el sonido. Esto puede comprobarse, por ejemplo, comparando el sonido obtenido al acercar un trozo de cartulina a una sierra de disco: cuando mayor sea la velocidad de rotación del disco más alto será el sonido producido.
  • El timbre está relacionado con la forma o la gráfica de la onda. El timbre es la cualidad del sonido que nos permite distinguir entre dos sonidos de la misma intensidad y altura. Podemos así distinguir si una nota ha sido tocada por una trompeta o un violín. Esto se debe a que todo sonido musical es un sonido complejo que puede ser considerado como una superposición de sonidos simples.
Ondas de diferentes instrumentos musicales
3. El sonido se refleja: el eco y la reverberación
    El eco es un fenómeno consistente en escuchar un sonido después de haberse extinguido la sensación producida por la onda sonora. Se produce eco cuando la onda sonora se refleja perpendicularmente en una pared. El oído puede distinguir separadamente sensaciones que estén por encima del tiempo de persistencia, que es 0.1 s para sonidos musicales y 0.07 s para sonidos secos (palabra). Por tanto, si el oído capta un sonido directo y, después de los tiempos de persistencia especificados, capta el sonido reflejado, se apreciará el efecto del eco. Para que se produzca eco, la superficie reflectante debe estar separada del foco sonoro una determinada distancia: 17 m para sonidos musicales y 11.34 m para sonidos secos.
    Se produce reverberación cuando las ondas reflejadas llegan al oyente antes de la extinción de la onda directa, es decir, en un tiempo menor que el de persistencia acústica del sonido. Este fenómeno es de suma importancia, ya que se produce en cualquier recinto en el que se propaga una onda sonora. El oyente no sólo percibe la onda directa, sino las sucesivas reflexiones que la misma produce en las distintas superficies del recinto. Controlando adecuadamente este efecto, se contribuye a mejorar las condiciones acústicas de los locales tales como teatros, salas de concierto y, en general, todo tipo de salas. La característica que define la reverberación de un local se denomina tiempo de reverberación. Se define como el tiempo que transcurre hasta que la intensidad del sonido queda reducida a una millonésima de su valor inicial. 

4. La contaminación acústica
    Desde hace años el ruido se ha convertido en un factor contaminante constante en la mayoría de las ciudades, suponiendo en la actualidad un grave problema con efectos fisiológicos, psicológicos, económicos y sociales. El principal causante de la contaminación acústica es la actividad humana. El ruido ha existido desde la antigüedad, pero es a partir del siglo pasado, como consecuencia de la Revolución Industrial, del desarrollo de nuevos medios de transporte y del crecimiento de las ciudades, cuando comienza a aparecer el problema de la contaminación acústica urbana. 

El ruido es molesto para el ser humano
El ruido se define como cualquier sonido calificado, por quien lo sufre, como algo molesto, indeseable e irritante. A su vez, se define la contaminación acústica como aquella que se genera por un sonido no deseado, que afecta negativamente a la calidad de vida y sobre todo, a aquellos individuos que desarrollan actividades industriales y a los que usan con bastante frecuencia determinados vehículos para poder desplazarse.
Para combatir la contaminación acústica, se adoptan normalmente dos tipos de medidas:
  • Medidas pasivas. Tratan de amortiguar el impacto sonoro, pero no eliminan los foco de emisión del sonido. Entre ellas se encuentran las pantallas acústicas, las pantallas o barreras verdes.
  • Medidas activas. Tiene como objetivo erradicar los focos de contaminación acústica y comprenden, por ejemplo, las investigaciones para mejorar los filtros silenciadores de los motores, las medidas para prohibir o limitar el tráfico rodado en ciertas zonas o las campañas para fomentar el uso del transporte público. 
Generadores de ruidos urbanos
 


La Luz


La luz (del latín lux, lucis) es la clase de energía electromagnética radiante que puede ser percibida por el ojo humano. En un sentido más amplio, el término luz incluye el rango entero de radiación conocido como el espectro electromagnético.
La ciencia que estudia las principales formas de producir luz, así como su control y aplicaciones, se denomina óptica.

Principales características, efectos y propiedades de la luz

El estudio de la luz revela una serie de características y efectos al interactuar con la materia, que nos permiten desarrollar algunas teorías sobre su naturaleza.


Rapidez finita


Se ha demostrado teórica y experimentalmente que la luz tiene una rapidez finita. La primera medición con éxito fue hecha por el astrónomo danés Ole Roemer en 1676 y desde entonces numerosos experimentos han mejorado la precisión con la que se conoce el dato. Actualmente el valor exacto aceptado para la rapidez de la luz en el vacío es de 299.792.458 m/s.
La rapidez de la luz al propagarse a través de la materia es menor que a través del vacío y depende de las propiedades dieléctricas del medio y de la energía de la luz. La relación entre la rapidez de la luz en el vacío y en un medio se denomina índice de refracción del medio:
·         Refracción
La refracción es el cambio brusco de dirección que sufre la luz al cambiar de medio. Este fenómeno se debe al hecho de que la luz se propaga a diferentes rapideces según el medio por el que viaja. El cambio de dirección es mayor, cuanto mayor es el cambio de rapidez, ya que la luz prefiere recorrer las mayores distancias en su desplazamiento por el medio que vaya más rápido. La ley de Snell relaciona el cambio de ángulo con el cambio de rapidez por medio de los índices de refracción de los medios.
Como la refracción depende de la energía de la luz, cuando se hace pasar luz blanca o policromática a través de un medio no paralelo, como un prisma, se produce la separación de la luz en sus diferentes componentes (colores) según su energía, en un fenómeno denominado dispersión refractiva. Si el medio es paralelo, la luz se vuelve a recomponer al salir de él.
Ejemplos muy comunes de la refracción son la ruptura aparente que se ve en un lápiz al introducirlo en agua o el arco iris.
·         Propagación y difracción
Una de las propiedades de la luz más evidentes a simple vista es que se propaga en línea recta. Lo podemos ver, por ejemplo, en la propagación de un rayo de luz a través de ambientes polvorientos o de atmósferas saturadas. La óptica geométrica parte de esta premisa para predecir la posición de la luz, en un determinado momento, a lo largo de su transmisión.
De la propagación de la luz y su encuentro con objetos surgen las sombras. Si interponemos un cuerpo opaco en el camino de la luz y a continuación una pantalla, obtendremos sobre ella la sombra del cuerpo. Si el origen de la luz o foco se encuentra lejos del cuerpo, de tal forma que, relativamente, sea más pequeño que el cuerpo, se producirá una sombra definida. Si se acerca el foco al cuerpo surgirá una sombra en la que se distinguen una región más clara denominada penumbra y otra más oscura denominada umbra.
Sin embargo, la luz no siempre se propaga en línea recta. Cuando la luz atraviesa un obstáculo puntiagudo o una abertura estrecha, el rayo se curva ligeramente. Este fenómeno, denominado difracción, es el responsable de que al mirar a través de un agujero muy pequeño todo se vea distorsionado o de que los telescopios y microscopios tengan un número de aumentos máximo.
·          
        Interferencia


  Experimento de Young

La forma más sencilla de estudiar el fenómeno de la interferencia es con el denominado experimento de Young que consiste en hacer incidir luz monocromática (de un solo color) en una pantalla que tiene rendija muy estrecha. La luz difractada que sale de dicha rendija se vuelve a hacer incidir en otra pantalla con una doble rendija. La luz procedente de las dos rendijas se combina en una tercera pantalla produciendo bandas alternativas claras y oscuras.
El fenómeno de las interferencias se puede ver también de forma natural en las manchas de aceite sobre los charcos de agua o en la cara con información de los discos compactos; ambos tienen una superficie que, cuando se ilumina con luz blanca, la difracta, produciéndose una cancelación por interferencias, en función del ángulo de incidencia de la luz, de cada uno de los colores que contiene, permitiendo verlos separados, como en un arco iris.
·          
        Reflexión y dispersión


  
Al incidir la luz en un cuerpo, la materia de la que está constituido retiene unos instantes su energía y a continuación la reemite en todas las direcciones. Este fenómeno es denominado reflexión. Sin embargo, en superficies ópticamente lisas, debido a interferencias destructivas, la mayor parte de la radiación se pierde, excepto la que se propaga con el mismo ángulo que incidió. Ejemplos simples de este efecto son los espejos, los metales pulidos o el agua de un río (que tiene el fondo oscuro).
La luz también se refleja por medio del fenómeno denominado reflexión interna total, que se produce cuando un rayo de luz, intenta salir de un medio en que su rapidez es más lenta a otro más rápido, con un determinado ángulo. Se produce una refracción de tal modo que no es capaz de atravesar la superficie entre ambos medios reflejándose completamente. Esta reflexión es la responsable de los destellos en un diamante tallado.
Cuando la luz es reflejada difusa e irregularmente, el proceso se denomina dispersión. Gracias a este fenómeno podemos seguir la trayectoria de la luz en ambientes polvorientos o en atmósferas saturadas. El color azul del cielo se debe a la luz del sol dispersada por la atmósfera. El color blanco de las nubes o el de la leche también se debe a la dispersión de la luz por el agua o por el calcio que contienen respectivamente.
·        
           Polarización

El fenómeno de la polarización se observa en unos cristales determinados que individualmente son transparentes. Sin embargo, si se colocan dos en serie, paralelos entre sí y con uno girado un determinado ángulo con respecto al otro, la luz no puede atravesarlos. Si se va rotando uno de los cristales, la luz empieza a atravesarlos alcanzándose la máxima intensidad cuando se ha rotado el cristal 90° sexagesimales respecto al ángulo de total oscuridad.
También se puede obtener luz polarizada a través de la reflexión de la luz. La luz reflejada está parcial o totalmente polarizada dependiendo del ángulo de incidencia. El ángulo que provoca una polarización total se llama ángulo de Brewster.
Muchas gafas de sol y filtros para cámaras incluyen cristales polarizadores para eliminar reflejos molestos


Teoría ondulatoria

Descripción

Esta teoría considera que la luz es una onda electromagnética, consistente en un campo eléctrico que varía en el tiempo generando a su vez un campo magnético y viceversa, ya que los campos eléctricos variables generan campos magnéticos (ley de Ampère) y los campos magnéticos variables generan campos eléctricos (ley de Faraday). De esta forma, la onda se autopropaga indefinidamente a través del espacio, con campos magnéticos y eléctricos generándose continuamente. Estas ondas electromagnéticas son sinusoidales, con los campos eléctrico y magnético perpendiculares entre sí y respecto a la dirección de propagación  .

Vista lateral (izquierda) de una onda electromagnética a lo largo de un instante y vista frontal (derecha) de la misma en un momento determinado. De color rojo se representa el campo magnético y de azul el eléctrico.
Para poder describir una onda electromagnética podemos utilizar los parámetros habituales de cualquier onda:
·        
         Amplitud (A): Es la longitud máxima respecto a la posición de equilibrio que alcanza la onda en su desplazamiento.
·        
         Periodo (T): Es el tiempo necesario para el paso de dos máximos o mínimos sucesivos por un punto fijo en el espacio.
·        
         Frecuencia (v): Número de oscilaciones del campo por unidad de tiempo. Es una cantidad inversa al periodo.
·          
      Longitud de onda (λ’ ‘): Es la distancia lineal entre dos puntos equivalentes de ondas sucesivas.
·          
      Velocidad de propagación (V): Es la distancia que recorre la onda en una unidad de tiempo. En el caso de la rapidez de propagación de la luz en el vacío, se representa con la letra c.
La velocidad, la frecuencia, el periodo y la longitud de onda están relacionadas por las siguientes ecuaciones:
 
Fenómenos ondulatorios

Algunos de los fenómenos más importantes de la luz se pueden comprender fácilmente si se considera que tiene un comportamiento ondulatorio.
El principio de superposición de ondas nos permite explicar el fenómeno de la interferencia: si juntamos en el mismo lugar dos ondas con la misma longitud de onda y amplitud, si están en fase (las crestas de las ondas coinciden) formarán una interferencia constructiva y la intensidad de la onda resultante será máxima e igual a dos veces la amplitud de las ondas que la conforman. Si están desfasadas, habrá un punto donde el desfase sea máximo (la cresta de la onda coincida exactamente con un valle) formándose una interferencia destructiva, anulándose la onda. El experimento de Young, con sus rendijas, nos permite obtener dos focos de luz de la misma longitud de onda y amplitud, creando un patrón de interferencias sobre una pantalla.
Las ondas cambian su dirección de propagación al cruzar un obstáculo puntiagudo o al pasar por una abertura estrecha. Como recoge el principio de Fresnel – Huygens, cada punto de un frente de ondas es un emisor de un nuevo frente de ondas que se propagan en todas las direcciones. La suma de todos los nuevos frentes de ondas hacen que la perturbación se siga propagando en la dirección original. Sin embargo, si por medio de una rendija o de un obstáculo puntiagudo, se separa uno o unos pocos de los nuevos emisores de ondas, predominará la nueva dirección de propagación frente a la original.

La difracción de la luz se explica fácilmente si se tiene en cuenta este efecto exclusivo de las ondas. La refracción, también se puede explicar utilizando este principio, teniendo en cuenta que los nuevos frentes de onda generados en el nuevo medio, no se transmitirán con la misma rapidez que en el anterior medio, generando una distorsión en la dirección de propagación:
Otro fenómeno de la luz fácilmente identificable con su naturaleza ondulatoria es la polarización. La luz no polarizada está compuesta por ondas que vibran en todos los ángulos, al llegar a un medio polarizador, sólo las ondas que vibran en un ángulo determinado consiguen atravesar el medio, al poner otro polarizador a continuación, si el ángulo que deja pasar el medio coincide con el ángulo de vibración de la onda, la luz pasará íntegra, si no sólo una parte pasará hasta llegar a un ángulo de 90º entre los dos polarizadores, donde no pasará nada de luz.

Este efecto, además, permite demostrar el carácter transversal de la luz (sus ondas vibran en dirección perpendicular a la dirección de propagación).
El efecto Faraday y el cálculo de la rapidez de la luz, c, a partir de constantes eléctricas (permitividad,  ) y magnéticas (permeabilidad, μ0) por parte de la teoría de Maxwell:

confirman que las ondas de las que está compuesta la luz son de naturaleza electromagnética. Esta teoría fue capaz, también, de eliminar la principal objeción a la teoría ondulatoria de la luz, que era encontrar la manera de que las ondas se trasladasen sin un medio material.


Teoria Electromagnetica


El caso del electromagnetismo es notable, entre otras cosas, por el hecho de que una vez llevados a cabo los descubrimientos científicos tuvieron inmediata aplicación práctica y viceversa, las aplicaciones prácticas fomentaron la investigación científica para resolver diferentes problemas, lo cual a su vez abrió nuevos horizontes científicos.
Haciendo una muy breve historia sobre aquellos científicos que aportaron grandiosos descubrimientos sobre el electromagnetismo se puede mencionar a. James Glerk Maxwell que realizó una gran síntesis teórica de los trabajos de Ampère y Faraday sobre la electricidad y el magnetismo, lo que le condujo al sorpresivo descubrimiento de que la luz era de origen eléctrico y magnético. Además, como consecuencia de la teoría que desarrolló predijo la existencia de las ondas electromagnéticas.
Basado en el trabajo de sus antecesores, Maxwell construyó uno de los pilares de la física, comparable con la mecánica desarrollada por Newton. Se ha de mencionar que la teoría electromagnética de Maxwell sirvió para el futuro desarrollo de la teoría de la relatividad de Einstein.
Años después de que Maxwell hiciera la predicción de las ondas electromagnéticas en forma teórica, Hertz llevó a cabo un notable experimento, que es un ejemplo de la forma en que se hace ciencia. Se propuso indagar si en la naturalezaefectivamente existen ondas electromagnéticas. Su trabajo verificó en forma brillante las predicciones de Maxwell.
Después de los experimentos de Hertz no quedó ya ninguna duda, desde el punto de vista conceptual, acerca de la realidad física de los campos, idea que Faraday había propuesto originalmente y que Maxwell elaboró en su forma matemática. Esta idea ha sido de crucial importancia en la física posterior, tanto para la relatividad de Einstein como para las teorías modernas de las partículas elementales
Otra consecuencia de los trabajos de Maxwell y Hertz fue el inicio de las comunicaciones inalámbricas
A partir de la década de 1950 se ha vivido en una revolución continua. Los avances científicos en la comprensión de la estructura de la materia han dado lugar a un sinfin de aplicaciones del electromagnetismo.

DIVERGENCIA

Supongamos (Fig.3) un punto P dentro de un pequeño volumen vD limitado a su vez por una superficie s. En este caso el volumen es un prisma  z, paralelas a los ejes x, y, y z respectivamente.D y y D x, Drecto de aristas  Todo ello en un espacio en el que se supone que existe un campo vectorial F. El flujo del campo F a través de la superficie s es, como hemos visto en (5.9),. (1) Si este flujo lo dividimos
 v, tendríamos el flujo por unidad de volumen:D por  (1). Se denomina divergencia de F (div F) al límite, cuando vD tiende a cero, de esta última expresión.

div F = (1)

Vamos a encontrar otra expresión de la divergencia en el sistemade coordenadas más frecuentemente utilizado (coordenadas cartesianas). El fujo de F a través de las 6 caras del cubo será la suma de los flujos a través de cada una de dichas caras. Así, a través de la cara A paralela al plano yz, el flujo valdrá:

A = FxF (1)

y a través de la cara opuesta a la A:

 A’ = – FxF (1)

Desarrollando en serie de Taylor DFx (x+  x/2, y, z) tendríamos:Dx/2, y, z) y Fx (x-

A =F (1)

 A’ =F (1)

donde con los puntos suspensivos queremos indicar los términos del desarrollo  x)3, etc ….. Pero como vamos aD x)2, (Dcon ( hacer  x,D v y por lo tanto Dtender a cero   z, esos términos serán despreciables frente al primero. LuegoD y y D

A’ =F A + F (1)

Con un razonamiento idéntico para las caras paralelas a xz y a xy tendremos que

 B’ =F B + F (1)

C’ =F C + F (1)

Como (1)  C’, nos quedaF C + F B’ +F B + F A’ +F A + F=  finalmente:

div F =(1); div F = (1)

Si utilizamos coordenadas cilíndricas,Y en coordenadas esféricas:
  
ROTACIONAL DE UN CAMPO VECTORIAL
Hemos definido anteriormente  el concepto de circulación de un campo vectorial F a lo largo de una trayectoria (abierta o cerrada). También hemos visto que si c es una curva cerrada:

 
Cuando un depósito lleno (una bañera, por ejemplo) está vaciándose a través de un desagüe, alrededor de éste se forman remolinos que son una imagen muy intuitiva de la circulación del vector velocidad. El desagüe sería la ‘fuente’ de la circulación, la causa de la ‘rotación’ a su alrededor, una imagen intuitiva de lo que vamos a definir en seguida como rotacional.

Supongamos un punto P0 en el espacio en el que está definido un campo vectorial F. Alrededor de este punto imaginamos una curva cerrada y plana C, que limita una superficie pequeña S que incluye al punto P0. La circulación de F alrededor de la curva C dependerá de la orientación de esta. Supongamos que hemos escogido la orientación en la que el valor de dicha circulación es máximo. “Se llama rotacional de Fen el punto P0 al valor  s tiende a cero deDcuando  un vector perpendicular a la superficie S; sentido determinado por la regla del sacacorchos o de la mano derecha, y cuyo módulo es: “.

Supongamos un punto P0 en el espacio en el que está definido un campo vectorial F. Alrededor de este punto imaginamos una curva cerrada y plana C, que limita una superficie pequeña S que incluye al punto P0. La circulación de F alrededor de la curva C dependerá de la orientación de esta. Supongamos que hemos escogido la orientación en la que el valor de dicha circulación es máximo. “Se llama rotacional de Fen el punto P0 al valor  s tiende a cero deDcuando  un vector perpendicular a la superficie S; sentido determinado por la regla del sacacorchos o de la mano derecha, y cuyo módulo es: “.


Espectro electromagnético

El espectro electromagnético está constituido por todos los posibles niveles de energía que la luz puede tomar. Hablar de energía es equivalente a hablar de longitud de onda; luego, el espectro electromagnético abarca, también, todas las longitudes de onda que la luz pueda tener, desde miles de kilómetros hasta femtómetros. Es por eso que la mayor parte de las representaciones esquemáticas del espectro suelen tener escala logarítmica.
El espectro electromagnético se divide en regiones espectrales, clasificadas según los métodos necesarios para generar y detectar los diversos tipos de radiación. Es por eso que estas regiones no tienen una frontera definida y existen algunos solapamientos entre ellas.

La tabla a continuación muestra el espectro electromagnético, con sus longitudes de onda, frecuencias y energías.


Longitud de onda
Frecuencia
Energía
Rayos gamma
< 10 pm
>30.0 EHz
>19.9E-15 J
Rayos X
< 10 nm
>30.0 PHz
>19.9E-18 J
Ultravioleta Extremo
< 200 nm
>1.5 PHz
>993E-21 J
Ultravioleta Cercano
< 380 nm
>789 THz
>523E-21 J
Luz Visible
< 780 nm
>384 THz
>255E-21 J
Infrarrojo Cercano
< 2.5 um
>120 THz
>79.5E-21 J
Infrarrojo Medio
< 50 um
>6.00 THz
>3.98E-21 J
Infrarrojo Lejano/submilimetrico
< 1 mm
>300 GHz
>199E-24 J
Microondas
< 30 cm
>1.0 GHz
>1.99e-24 J
Ultra Alta Frecuencia Radio
<1 m
>300 MHz
>1.99e-25 J
Muy Alta Frecuencia Radio
<10 m
>30 MHz
>2.05e-26 J
Onda corta Radio
<180 m
>1.7 MHz
>1.13e-27 J
Onda Media(AM) Radio
<650 m
>650 kHz
>4.31e-28 J
Onda Larga Radio
<10 km
>30 kHz
>1.98e-29 J
Muy Baja Frecuencia Radio
>10 km
<30 kHz
<1.99e-29 J


Reflexión de la luz
Cuando un rayo luminoso incide en la superficie de separación de dos medios distintos parte de la energía luminosa sigue propagándose en el mismo medio ( se refleja) y parte pasa a propagarse por el otro medio con una velocidad distinta ( se refracta).

Se denomina rayo incidente a aquel que representa la luz que incide sobre la superficie, rayo reflejado al que representa la fracción de energía luminosa reflejada y rayo refractado al que representa la fracción de energía que se propaga por el nuevo medio.

Se puede demostrar experimentalmente que:
- El rayo incidente, el reflejado y la normal a la superficie se encuentran en el mismo plano llamado plano de incidencia.
- El ángulo de incidencia î y el de refracción î ’ son iguales.
Esto es lo que se conoce como ley de la reflexión
1.    
Una superficie se comportará como pulida si las variaciones superficiales son pequeñas en comparación con la longitud de onda de la onda incidente.
1.     En una superficie rugosa, la reflexión es difusa.

OJO: Cuando un rayo de luz consta de varios rayos e incide sobre una superficie lisa, similar a un espejo, se refleja, como indica la figura, y todos los rayos reflejados son paralelos. La reflexión de la luz desde ese objeto liso se llama especular. Si la superficie reflectora es rugosa, la superficie reflejará los rayos en diferentes direcciones. Se conoce como reflexión difusa. Esto nos permite ver las superficies de objetos que no emiten luz propia y que de otra manera no percibiríamos Una superficie se comportará como una superficie pulida si las variaciones superficiales son pequeñas en comparación con la longitud de onda incidente.Consideremos los dos tipos de reflexión que pueden observarse desde una superficie de la carretera mientras se conduce un coche en la noche. Cuando está seca y rugosa la luz que proviene de otros vehículos que se aproximan se dispersa fuera de la carretera en diferentes direcciones, haciendo el camino claramente visible. En una noche lluviosa, las irregularidades del camino se llenan de agua, haciendo la superficie pulida. La reflexión resultante es especular y dificulta la visión del camino. En nuestros ejemplos hablaremos siempre de reflexión especular.



 Laboratorio "La Luz"



"La Responsabilidad Es La Base Del Exito"

"Cuando Se Quiere Hacer Algo Asi Sea Complicado Se Puede Hacer"

"Decidete Claramente Que Quieres En Tu Vida y Luego Asegurate De Lograrlo"

"No Tengas Miedo De Dar Lo Mejor De Ti En Las Pequeñas Cosas. Cada Vez Que Logras Algo Te Vuelves Mas Fuerte. Si Haces Pequeñas Cosas Bien, Cuando Tengas Que Hacer Algo Grande Sera Muy Facil"